
Modeling and Composing Scenario-Based Requirements with Aspects

João Araújo †, Jon Whittle‡, Dae-Kyoo Kim ψ
†Dept. Informática, FCT, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal

‡ QSS Group/NASA Ames Research Center, Moffett Field, CA 94035, USA,
ψ Colorado State University, Fort Collins, CO 80523, USA

ja@di.fct.unl.pt, jonathw@email.arc.nasa.gov, dkkim@cs.colostate.edu

Abstract

There has been significant recent interest, within

the Aspect-Oriented Software Development (AOSD)
community, in representing crosscutting concerns at
various stages of the software lifecycle. However, most
of these efforts have concentrated on the design and
implementation phases. We focus in this paper on
representing aspects during use case modeling. In
particular, we focus on scenario-based requirements
and show how to compose aspectual and non-
aspectual scenarios so that they can be simulated as a
whole. Non-aspectual scenarios are modeled as UML
sequence diagrams. Aspectual scenarios are modeled
as Interaction Pattern Specifications (IPSs). In order
to simulate them, the scenarios are transformed into a
set of executable state machines using an existing state
machine synthesis algorithm. Previous work composed
aspectual and non-aspectual scenarios at the sequence
diagram level. In this paper, the composition is done at
the state machine level.

1. Introduction

Requirements that cut across other requirements
may result in tangled representations. Consequently,
the reaction to requirements change is more difficult,
since the impact of the change is more complicated to
handle. It is therefore important to consider
crosscutting requirements early in the software
lifecycle.

The best way to deal with crosscutting requirements
is to separate them from other requirements and model
them independently. This modularization avoids
tangled representations in the requirements document
and facilitates requirements evolution. On the other
hand, if no attention is paid to how the crosscutting
requirements interact with other requirements, there is
a danger that the nature of these interactions will only

become clear during later stages of software
development when problems are more costly to rectify.
Hence, it is necessary at the requirements stage to have
both a means of modeling crosscutting concerns
independently but also a means of composing
crosscutting concerns with other requirements in a way
that will allow the entire set of requirements to be
validated.

Aspect-oriented software development (AOSD) [4,
8] advocates the separation of crosscutting concerns
(aspects) during development. However, most research
in this area has focused on the design and
implementation phases of the software lifecycle. In this
paper, we consider aspects at the requirements level. In
particular, we concentrate on scenario-based require-
ments. A simple example of an aspectual requirement
scenario would be the description of the steps taken in
response to a communications failure. The
communications failure scenario is an aspect because it
applies to all scenarios using the particular
communication mechanism. Modeling the failure
scenario without aspects requires that the failure steps
must be considered in all affected scenarios. Our
approach will model the failure scenario separately and
only later will the failure behavior be composed with
the affected scenarios.

A scenario is an example trace of desired or existing
system behavior. Scenarios are commonly used in
requirements engineering [1] because they are easily
understood by all stakeholders. A complete and
consistent set of scenarios can be difficult to specify,
however, because there are a lot of non-nominal
scenarios (e.g., exception, failure cases) to consider.
Many of these are aspectual in the sense that they
crosscut other scenarios.

Our process provides a way to describe aspectual
and non-aspectual scenarios independently and then to
merge them together for the purpose of validating the
complete set of scenarios. In particular, we show how

to separate aspectual scenarios and how to compose the
behaviors represented by these scenarios so that the
aspectual behavior can also become part of the
validation effort.

Scenarios will be modeled, in this paper, as UML
interactions (in particular, sequence diagrams) [15].
UML interactions, when used to model requirements,
show the required behavior of several system
components communicating towards a common goal.
Interactions are a good way of modeling early
requirements because they show global exchanges
between system components and are very natural and
intuitive to write down. Interactions give a global view
of the requirements, but to simulate the requirements, a
local view of each system component is necessary1.
Finite state machines (FSMs) can be used to model the
local, internal behavior of system components.

We will show how to model aspectual scenarios –
that is, scenarios that crosscut other scenarios.
Furthermore, we will provide a way of generating finite
state machines from these scenarios in a manner that
composes the aspectual and non-aspectual behavior so
that the set of scenarios can be validated as a whole. As
previously stated, scenarios will be modeled as UML
sequence diagrams. Aspectual scenarios will be
modeled as Interaction Pattern Specifications (IPSs)
[6]. Finite state machines will be modeled as UML
state machines and aspectual finite state machines will
be modeled as State Machine Pattern Specifications
(SMPSs) [9].

We present the modeling and composition of
aspectual scenarios in the context of an iterative
validation process. An initial set of scenarios is
translated automatically into a set of UML state
machines – aspectual scenarios (i.e., Interaction Pattern
Specifications) become aspectual state machines (i.e.,
SMPSs). The aspectual and non-aspectual state
machines are then composed by instantiating the
aspects. The result is a new set of state machines
representing the complete specification. These state
machines can be simulated thus providing a convenient
and easy way for the scenario-based requirements to be
validated. During simulation, it is likely that new
scenarios will be discovered or inconsistencies and
ambiguities will be found in the way that the aspects
interact with the non-aspects.

Previous results [17, 18] showed a similar iterative
validation process in which aspects and non-aspects are
composed at the scenario level. In this paper, the
composition is done at the state machine level. More
precisely, in the former approach, aspects and non-

1 at least, using current technology

aspects are combined before state machines are
generated from them. The separation of concerns is
maintained at the state machine level by generating
separately state machines from the aspects and state
machines from the non-aspects. There are advantages
and disadvantages to both approaches.

With composition at the scenario level, the state
machines need never be seen by the requirements
engineer. Composition is specified purely in terms of
scenario relationships and the executable state
machines that are generated can be hidden. This has
advantages for requirements engineers not trained in
state-based techniques.

On the other hand, composition at the scenario level
tends to be rather coarse-grained. The user must
provide composition operators that describe how to
interleave messages from different scenarios. By
composing instead at the state machine level, there is
additional flexibility in describing the nature of the
composition because composition can be defined in
terms of states that are not specified in the scenarios.

Note that we do not advocate either of these
solutions, but expect that each one will be appropriate
in different contexts.

This paper is organized as follows. Section 2
presents the overall approach. Section 3 describes
aspectual scenarios and state machines. Section 4
presents the process of composition of aspectual and
non-aspectual state machines. Section 5 shows the
application of the approach to an example. Section 6
gives some related work and finally, section 7 presents
some conclusions and points directions to future work.

2. Overview of the approach

To situate our approach, we define a high-level
process for developing and composing aspectual and
non-aspectual behavior – see Figure 1. Use cases (i.e.,
functional requirements) are refined to a set of
scenarios (also called interactions in this paper).
Aspectual scenarios, i.e., scenarios that crosscut other
scenarios, are represented as Interaction Pattern
Specifications and non-aspectual ones as UML
sequence diagrams.

Each aspectual or non-aspectual scenario is
translated into a set of aspectual or non-aspectual state
machines (one for each entity involved in the
interaction). This is done using the Whittle &
Schumann state machine synthesis algorithm [19].

The result of the synthesis algorithm is a set of state
machines – each entity will have an aspectual and a
non-aspectual state machine. The next stage of the
process composes the aspectual and non-aspectual state

machine for each entity. The result is an executable set
of state machines that completely describe the
requirements and in which aspectual and non-aspectual
behavior has been merged. Validation of these state
machines can now take place using either a simulation
harness or a code generator and the results can be
fedback into the overall process.

 Identify and define
requirements

Identify
scenarios

Specify
aspectual and
non-aspectual

scenarios

Identify aspectual
scenarios

Compose
aspectual and
non-aspectual
state machines

Generate
aspectual and
non-aspectual
state machines

Simulate and
validate
system

requirements

Fig. 1: Process model

Composing (or weaving) aspectual and non-
aspectual state machines helps the requirements
engineer grasp the full picture. To compose aspectual
and non-aspectual state machines, we use the notion of
binding and State Machine Pattern Specification. This
approach requires that there is a binding statement for
each application of the aspectual state machine.
Interaction Pattern Specifications and State Machine
Pattern Specifications are described in the next section.

3. Background

In this section, we present the required technical
background for the rest of the paper.

3.1 Pattern Specifications

Pattern Specifications (PSs) [6, 9] are a way of

formalizing the structural and behavioral features of a
pattern. The notation for PSs is based on the Unified
Modeling Language (UML) [15].

A Pattern Specification describes a pattern of
structure or behavior and is defined in terms of roles. A
PS can be instantiated by assigning modeling elements
to play these roles. The abstract syntax of UML is
defined by a UML metamodel. A role is a UML
metaclass specialized by additional properties that any
element fulfilling the role must possess. Hence, a role
specifies a subset of the instances of the UML
metaclass. A PS can be instantiated by assigning UML

model elements to the roles in the PS. A model
conforms to a pattern specification if its model
elements that play the roles of the pattern specification
satisfy the properties defined by the roles.

Pattern specifications can be defined to show static
structure or dynamic behavior. In this paper, we will
only be concerned with specifications of behavior but it
should be noted that any class roles participating in
pattern specifications must be defined in a Static
Pattern Specification (SPS), which is the PS equivalent
of a class diagram.

An Interaction Pattern Specification defines a
pattern of interactions between its participants. It
consists of a number of lifeline roles and message roles
which are specializations of the UML metaclasses
Lifeline and Message respectively. Each lifeline role is
associated with a classifier role, a specialization of a
UML classifier. Figure 2 shows an example of an IPS
and a conforming sequence diagram (taken from [6]).
The IPS in Figure 2(a) formalizes the Observer pattern.
Role names are preceded by a vertical bar to denote
that they are roles. An IPS can be instantiated by
assigning concrete modeling elements to the roles. A
conforming sequence diagram (see Figure 2(b)) must
instantiate each of the roles with UML model elements
satisfying the partial ordering on the message roles,
multiplicity and other constraints (e.g., given in the
Object Constraint Language [16]). In Figure 2, (b)
conforms to (a) if we define instantiations as follows:

1. Bind |NotifyInteraction to KilnInteraction
2. Bind |s to s
3. Bind |Subject to Kiln
4. Bind |o[i] to t[i]
5. Bind |Observer to TempObs
6. Bind |Notify to NotifyObs
7. Bind |Update to UpdateTemp
8. Bind |GetState to GetKilnTemp
9. Bind |st to st
10. Bind |NumOfObservers to NumOfTempObs

Note that any number of additional model elements
may be present in a conforming sequence diagram,
namely, m, Monitor and LogUpdateRecd in Figure
2(b), as long as the role constraints are maintained.

A State Machine Pattern Specification (SMPS)
defines a pattern of state-based behavior between its
participants. It consists of a number of state roles and
transition roles, which are specializations of the UML
metaclasses State and Transition respectively.

An SMPS can be instantiated by assigning concrete
modeling elements to the roles. Figure 3 shows an
example of an SMPS and a conforming state machine

 (a) (b)

Fig. 2: An IPS (a) and a Conforming Sequence Diagram (b)

where S1, S2, T1 and T2 have been instantiated to A1,
A2, P1 and P2 respectively.

Notice again that additional modeling elements are
allowed in the conforming diagram, Figure 3(b) –
namely, A3, P3 and P4. A state machine pattern
specification captures the fact that a state machine
diagram is an instance of an SMPS if the states and
relative ordering of the transitions in the SMPS are
preserved in the conforming state machine diagram.

|S1

|S2

|T1

A3

A2

A1

P1

P2

P4

P3
|T2

(a) (b)

Fig. 3: An SMPS (a) and a Conforming State
Machine (b)

An alternative way of representing patterns in UML
is to use UML templates [2]. However, PSs are more
flexible in terms of instantiation.

3.2 State Machine Synthesis

The following is a brief description of the algorithm
used in this paper to synthesize state machines from a
collection of scenarios (represented as UML sequence
diagrams). The algorithm is a variant of the one
described in [19].

Any algorithm that translates a set of scenarios into
state machines must transition from a global scenario-
based view (in which interactions between all system
components are considered) to local component-based
views (in which a state machine is given for each
component). In general, a set of state machines can be
executed whereas a set of scenarios (e.g., UML

sequence diagrams) cannot because local models are
needed for execution.

There are many algorithms for transforming
scenarios into executable state machines. The
interested reader is referred to [20] for examples. We
merely give the flavor of the technique here. Synthesis
of state machines is performed in two steps. First, each
sequence diagram is converted into a set of state
machines, one for each object 2 involved in the
interaction. Next, the individual state machines derived
for each object (from different sequence diagrams) are
merged into a single state machine for that object.

In the first step, an individual sequence diagram is
translated into a collection of finite state machines
(FSMs). Messages directed towards a particular object
are considered events in the FSM for that object.
Messages directed away from an object are considered
actions. The synthesis algorithm starts by generating an
initial state for each FSM. It then traverses the
sequence of messages. Messages have a unique sender
object and a unique receiver object. For each message,
a transition is added to the FSM for the receiver of the
message where the transition is labeled with an event
having the same name as the message. Similarly, a
transition is added to the FSM for the sender with an
action defined, where the action is to send the message.

We allow state labels in sequence diagrams3 that
explicitly label a state of an object in the interaction.
State labels become named states in the generated
FSM. State labels can lead to loops in the generated
FSM if a state label occurs in multiple places.

2 When describing the synthesis algorithm, we will refer to objects in

scenarios. More generally, however, scenarios may represent
interactions between components or subsystems and hence all
discussion referring to objects equally applies to components and
subsystems.

3 State labels are similar to continuations in Message Sequence
Charts and UML2.0 sequence diagrams.

s:Kiln

sd

t[i]:TempObs

NotifyObs

UpdateTemp(s)

st:=GetKilnTemp()

KilnInteraction

m:Monitor

LogUpdateRecd(s)

loop <i=1..NumOfTempObs>

|s:|Subject

|NotifyInteraction 1..*

|o[i]:|Observer

loop <i=1…|NumOfObservers>

|Notify

|Update(|s)

|st=|GetState()

 Figure 4 shows an example of synthesis for a single
sequence diagram. The state machine on the right is
generated for B. a/b is the standard event/action
notation for state machines (i.e., if event a occurs, then
the transition fires which results in action b being
taken, where for the purposes of this paper, actions
always involve sending messages). The black boxes are
state labels.

Fig. 4: Synthesis for a single sequence diagram.

Once finite state machines have been created for the
individual sequence diagrams, the finite state machines
generated from different sequence diagrams for a
particular object are merged together. Merging state
machines derived from different sequence diagrams is
based upon identifying similar states in the FSMs. Our
notion of similarity is based on identifying common
incoming and outgoing transitions to states – see [19]
for more details.

4. Composition of Aspectual and Non-
Aspectual Finite State Machines

In the same way as [2, 7], we regard aspects as

patterns. In particular, we represent aspectual scenarios
as Interaction Pattern Specifications and aspectual state
machines as State Machine Pattern Specifications. In [6,
9], an IPS or SMPS consists solely of role elements.
We extend this definition to allow an IPS or SMPS to
contain both role elements and non-role (i.e. concrete
modeling) elements. An example of this in Figure 2(a)
would be if the |Subject role were replaced with the
concrete modeling element, Kiln, in the IPS.

Allowing non-role elements in an IPS and SMPS
gives much greater flexibility in specifying aspects. For
example, a security aspect might specify that any new
user to a system must have their password checked.
The actions to check the password will be the same for
any user and hence should be represented directly as
concrete modeling elements rather than role elements
that must be instantiated. The inclusion of concrete
modeling elements in the pattern specifications reduces
the number of instantiation steps since roles that would

be instantiated to the same elements in all contexts can
be directly represented as those elements in the pattern
specification.

Figure 5 describes the composition of aspectual and
non-aspectual finite state machines using the synthesis
algorithm and instantiation.

instantiation

non-aspects IPSs

merging

synthesis

FSMs SMPSs

Fig. 5: Compose aspectual and non-aspectual FSM.
Non-aspectual scenarios are specified as sequence

diagrams. Aspectual scenarios are specified as IPSs.
These scenarios are merged together into state
machines (one aspectual and one non-aspectual for
each participating object) using the synthesis algorithm.
The result is two sets of FSMs: one originating from
non-aspectual scenarios and another obtained from
aspectual scenarios. For each aspectual FSM, an
instantiation is given within the context of those FSMs
that it crosscuts. This yields a new set of FSMs
(instantiated SMPSs). However, there will now be
multiple state machines for the same object (i.e., one
aspectual and one non-aspectual FSM) and so these
state machines must be merged to yield a single state
machine for the object that represents the combination
of the aspectual and non-aspectual behavior.

As shown in Figure 5, we identify two distinct
stages in the state machine aspect composition process.
The first is instantiation in which SMPSs are given a
binding statement. The second is merging in which the
bound SMPS is woven with existing non-aspectual
FSMs. These two stages are described in the following
sections.

4.1 Instantiation and Merging

In previous work [17, 18], instantiation and merging

were considered at the scenario level, i.e., the IPSs
were instantiated and merged with the non-aspect
scenarios before synthesis took place. In what follows,
we describe a method for instantiation and merging at

A B C

S1
p

q

S1

p/q

r
r/

s/t

S1
s

t

the state machine level (i.e., after synthesis takes
place).

An important issue surrounding instantiation and
merging is the level of input required from the user.
Instantiation is a manual process because the bindings
have to be provided for each case in which an aspect
crosscuts a non-aspect. Merging, however, can be
partially automated. Our approach is to define an
algorithm for automating the process of merging but to
allow fine-tuning of this algorithm by user input.

4.2 Codification of Instantiation

Instantiation is the process of binding role elements
to concrete modeling elements. For state machines, the
binding consists of mapping state roles and transition
roles. The transition role mapping is a one-to-one
mapping of the labels on the transitions. For state roles,
we allow a many-to-many mapping. In some cases, a
one-to-one mapping is enough but greater flexibility in
the way merging is done is achieved via a many-to-
many mapping. In order to support automatic merging
in the presence of a many-to-many state role mapping,
additional information will be required from the user,
as follows:

1. If the state role mapping is one-to-one, no
further input is needed from the user.

2. If the state role mapping is many-to-one, then
multiple state roles are mapped to the same
image state. This is interpreted as meaning
that the image state becomes a composite state
with the state roles as sub-states. Any
transitions directed to (or from) the image
state must be re-directed towards (or away
from) one of its new substates. The user must
give the substate that the transitions will be
directed towards or away from.

3. If the state role mapping is one-to-many, then
a single state role maps into multiple image
states. Because of this, for a transition directed
towards (or away from) the state role, it is not
clear which image state the transition should
be directed towards (or away from). Hence,
this additional information must be provided
by the user.

We will refer to the additional user input required in
cases (2) and (3) as merging directives.

The result of instantiation is defined by a mapping
θ, that binds transition roles to concrete transitions and
state roles to concrete states, and merging directives if
θ is many-to-one or one-to-many. For the rest of this
section, we assume, for simplicity, that the transition
role mapping is the identity.

4.3 Codification of Merging

We will refer to the example in Figure 6 during the
description of the merging algorithm.

|s1

|s2

|s3

|s4

t1

t2

t3

t4

t5

m1

q

m4

m1

m2

m3

m4

(a) A (b) X

Fig. 6: SMPS (a) crosscuts FSM (b).

The left hand side of Figure 6 is an aspect SMPS and
the right hand side is a non-aspectual FSM. To simplify
things, we have assumed that the event roles on the
transitions of the SMPS have already been instantiated
to m1 and m4. q is a concrete modeling element that
occurs in the SMPS. Note that not all role elements in
the SMPS need be given bindings (e.g., |s3 will not be
instantiated in our first example). The merging
algorithm proceeds as follows. Denote the SMPS by A
and the non-aspectual FSM by X. A new state machine,
Z, is created with states as follows:

• Each state of X becomes a state of Z.
• For A, if θ maps multiple state roles of A to a

single concrete state of X, then X becomes a
composite state in Z and the state roles of A
become substates of X in Z.

• For A, if θ maps a state role of A to a concrete
state of X such that no other state role of A
maps to that concrete state, then the state role
of A is discarded (i.e., it does not become a
state in Z).

• In all other cases, state roles of A become
states of Z, where the name of the state role,
|a, is mapped in Z to θ(|a).

The transitions of Z are created as follows:
• All transitions of X become transitions of Z.

However, if a transition of X has a target state4
in X that becomes a composite state in Z, then
the transition must be redirected such that its
target state in Z is a substate of the composite
state. The merging directives tell the algorithm
which substate the transition should be
redirected to. Similarly, if the transition of X
has a source state mapped to a composite state

4 The originating state of a transition will be called its source state.
Similarly, the destination state of a transition is its target state.

in Z, then the source is redirected to a substate
of the composite state.

• A transition of A whose source state and target
state roles are each mapped to zero or one
state under θ, becomes a transition in Z.

• If a transition of A has a source state role that
is mapped to multiple states under θ, the
transition of A becomes a transition of Z, but it
is redirected so that its source state becomes
the state specified by the merging directives.
Similarly for a transition of A that has a target
state role mapped to multiple states under θ.

Note how the merging directives required in the
case of a many-to-many mapping θ are reflected in how
transitions are created in Z. The many-to-one mapping
of state roles is taken care of by the first bullet point,
which ensures that transitions in Z are connected to the
correct states in the composite states of Z. The one-to-
many mapping of state roles is taken care of by the
third bullet point – transitions connected in A to a state
role involved in a one-to-many mapping must be told
which states they should connect in the final state
machine Z.

As written, the rules for constructing Z may result in
duplicate transitions in Z. We leave it up to the
algorithm implementer to remove copies of transitions.

Returning to Figure 6, suppose that the SMPS on the
left-hand side is bound to the FSM on the right-hand
side by the mapping θ(|s1)=t1, θ(|s2) = t2, θ(|s4) = t5.
Following the rules just defined for creating a new state
machine Z results in Figure 7.

t1

t2

m1

t3m2

t4
m3

t5

m4|s3

q

m4

Fig. 7: Merged FSM and SMPS from Fig. 6.

The merging algorithm has matched the prefix and
suffix of the two paths defined in the state machines
and has created a branch in the centre.

We provide another example of merging at the state
machine level that interleaves the events from the
aspectual and non-aspectual state machine. In this case,
the mapping θ is defined by θ(|s1)=t1, θ(|s2) = t2,
θ(|s3) = t2 & t4, θ(|s4) = t5. Note that two state roles
(|s2 and |s3) in the aspect state machine have been
mapped onto a single composite state (t2). As
discussed above, the user must provide merging
directives that re-route transitions into or out of this
composite state. In this case, there are two transitions –

m1 and m2. The target state for m1 is given by a
merging directive as |s2. The source state for m2 is
given as |s3. Note also that |s3 maps to multiple states.
Hence, the user must define, for each incoming (and
outgoing) transition of |s3 which target (source) state
the transition should be directed towards. In this
example, we define that q should go to |s3 in the
merged state machine, whereas m4 should leave from
t4. The result of applying the merge algorithm is shown
in Figure 8. Note that θ gives the user a way to control
the ordering of q with respect to the other events. A
way to provide such control is not obvious when
merging at the interaction level. At the state machine
level, however, we can redefine θ as follows: θ(|s1)=t1,
θ(|s2) = t3, θ(|s3) = t3 & t4, θ(|s4) = t5. The result is a
state machine similar to Figure 8 except that t3 is a
composite state rather than t2 and the order of the
events is m1, m2, q, m3, m4. This ordering satisfies the
constraints of the original SMPS and hence the merged
state machine continues to conform to the SMPS.

t1

t2

|s2

|s3 t3

t4

m3

t5
m4

|s2

|s3
q

m2

m1

Fig. 8: Event interleaving during composition.

5. Example

We will illustrate our approach using a simple car
parking example. The top-level requirements for the
car parking system are as follows:

“To use a car parking system, a client has to get a ticket

from a machine after pressing a button. Afterwards, the car
is allowed to enter and park in an available place. The
system has to control if the car parking is full or if it still has
places left. When s/he wants to leave the parking place, s/he
has to pay the ticket obtained (described above) in a paying
machine. The amount depends on the time spent. After
paying the client can leave by inserting the ticket in a
machine which will open the gate for her/him to leave.
Regular users of the parking system may pre-purchase time
and enter/exit by inserting a card and PIN number which
will result in money being deducted automatically from the
user’s account.”

5.1 Identify use cases, aspectual and non-
aspectual scenarios

By analyzing the requirements above, we identify

the use cases Enter Lot, Exit Lot and Pay. Figure 9
shows a use case diagram for the example. Interaction
scenarios can easily be identified based on the Use
Case diagram.

Enter Lot
Pay

Driver

Exit Lot
Fig. 9: Use Case Diagram for the Car Parking System

We refine each use case into a number of scenarios.
Among these, some crosscut other ones. For example,
some error-handling scenarios – i.e., how to react in the
case of broken machinery, incorrect PIN etc. – can be
modeled as aspectual scenarios if crosscutting is
identified. This leads to the scenarios given in Tables 1
and 2, where I1-I11 are non-aspectual and A1-A3 are
aspectual. For example, A1 is an aspectual scenario as
it crosscuts the non-aspectual scenarios I3, I4, and I10.

Table 1: Non-Aspectual Scenarios
I1 Enter Lot, parking lot has space
I2 Enter Lot, parking lot has no space
I3 Enter Lot, regular user types in PIN and enters
I4 Exit Lot, driver inserts ticket; ticket paid
I5 Exit Lot, driver inserts ticket; ticket not paid
I6 Exit Lot, driver has no ticket
I7 Exit Lot, grace period from paying ticket exceeded
I8 Exit Lot, regular user types in PIN and exits
I9 Exit Lot, driver types in PIN but insufficient funds in account
I10 Pay, driver inserts ticket and correct money
I11 Pay, driver adds money to PIN card

Table 2: Aspectual Scenarios
A1 Machine is broken
A2 Ticket cannot be read
A3 PIN incorrect

5.2 Describe aspectual and non-aspectual
scenarios

We will give a representative example for modeling
the aspects using an Interaction Pattern Specification
(IPS). Figure 10 shows the IPS for interaction aspect
A1. If the machine cannot respond for any reason the
supervisor is alerted and the driver receives an error

message. The IPS contains four role names that must
be instantiated to compose the aspect with UML
sequence diagrams. The non-aspectual scenario I4 is
given by the sequence diagram in Figure 11.

Driver |Machine Supervisor

|Action(|a)

|CannotRespond

alertSupervisor(|a)

displayErrorMessage

Fig. 10: IPS for the scenario “Machine is broken”.

Driver Lot Exit
Machine

Data RecordBarrier

insertTicket(t)

checkTicket(t)

recordTransaction(t)

ejectTicket

open

takeTicket

drive

sensorValidatedExit

close

Fig. 11: Sequence diagram for exiting with paid ticket.

After the driver inserts the ticket, the Lot exit
Machine checks it and if it is valid the transaction is
recorded. Then the ticket is ejected and the barrier
opens. Once the driver collects the ticket and leaves,
the barrier is closed.

5.3 Generating SMPSs and FSMs

We now apply the synthesis algorithm to the
scenarios in Figures 10 and 11. The algorithm produces
an SMPS for |Machine (Figure 12) and a state machine
for the Lot Exit Machine (Figure 13).

|s1

|s2

|Action(|a)

|s3

|CannotRespond /
alertSupervisor (|a);
displayErrorMessage

Fig. 12: State machine for |Machine.

t1

t2
entry/ checkTicket (t)

insertTicket(t)

t3

 / recordTransaction(t);
ejectTicket; open

t4

takeTicket

sensorValidatedExit /
close

Fig. 13: State machine for Lot Exit Machine.

5.4 Instantiating SMPSs

Let us follow the process of instantiation for the
SMPS for |Machine and state machine for Lot Exit
Machine. There are five role elements in A1 (see Table
2) which must be given a binding, as follows:

1. |s1 binds to t1
2. |s2 binds to t2
3. |Action binds to insertTicket
4. |a binds to t
5. |CannotRespond binds to timeout

Note that bindings (1)-(4) bind role elements to
concrete modeling elements in Lot Exit Machine’s
FSM. Binding (5), however, binds to a modeling
element that is not part of the Lot Exit Machine’s FSM.
Given the bindings, composition is done automatically.
The instantiated SMPS of |Machine is compared to the
FSM of Lot Exit Machine and composition produces a
new FSM that combines the behavior from instantiated
|Machine and Lot Exit Machine in such a way that the
new FSM contains all behavior from instantiated
|Machine and Lot Exit Machine and, in addition,
conforms to the original SMPS |Machine. The resulting
new FSM is shown in Figure 14.

 t1

t2
entry/ checkTicket (

insertTicket(t)

t3

|s3
timeout / alertSupervisor (t);
displayErrorMessage

 / recordTransaction(t);
ejectTicket; open

t4

takeTicket

sensorValidatedExit /
close

Fig. 14: Composed FSM.

State machines can also be generated for the other
objects in the interactions and, after instantiation, the
whole system can be simulated by injecting events
using commercially available tools and the
requirements validated by the users.

6. Related work

Some requirements approaches, such as viewpoints
[5] and goals [11], address separation of functional and
non-functional requirements. PREView [14] is a
viewpoint-oriented requirements engineering method,
which helps separate functional and non-functional
properties of a system. Non-functional requirements are
also separated from functional ones in goal-oriented
approaches such as KAOS [3]. However, the
identification of crosscutting requirements and their
composition are not addressed explicitly.

Rashid et al. [12, 13] support separation of
crosscutting properties at the requirements level.
Composition rules are defined using XML. They use a
list of constraint actions and operators, which are used
to specify how an aspectual requirement influences or
constrains the behavior of a set of non-aspectual
requirements. Moreover, a conflict resolution scheme is
presented, which is not addressed in our approach.

Georg et al. [7] propose an aspect-oriented design
approach that defines an aspect through role models to
be woven into UML diagrams. The approach is similar
to ours in that aspects are treated as patterns. In
particular, interaction aspects may be modeled as
interaction role models. However, [7] does not allow
concrete modeling elements in the role models. The
addition of concrete modeling elements may be useful
in practice to reduce the number of instantiations that
the user must provide. In addition, [7] only considers
instantiation for interaction role models, not
composition of role models with non-aspectual
interactions.

Clarke and Walker [2] use UML templates to define
aspects. Interaction pattern specifications provide a
much more precise way of defining aspects. [2] also is
concerned more with how to specify the aspects rather
than weaving aspects into non-aspectual models.
Clarke and Walker compose static structural properties
of aspects with non-aspectual class models, but do not
compose interaction properties of aspects with
interaction models.

There is also the work by S. Konrad and B. Cheng
[10]. They focused on requirements patterns for
embedded systems. However, pattern composition is
not addressed in that work.

7. Conclusions

This paper presented an approach to modeling
scenario-based requirements using aspect-oriented
principles. Aspectual scenarios were modeled using
Interaction Pattern Specifications (IPSs). A technique
was described to compose aspectual and non-aspectual
scenarios and to transform them into a set of executable
state machines. In this way, we showed how to separate
aspects during scenario development but also how to
generate a composed behavioral description for
simulating the scenarios.

The advantages of the approach are common to
aspect-oriented software development in general: better
modularization and traceability. This is reflected in the
flexible and simple way that the merging algorithm is
defined. Future work will address how to use the result
of the simulation step to augment or correct the
scenario models.

One issue that has not been directly addressed is
scalability. The developer must provide binding
statements for each aspect and for each scenario that
the aspect crosscuts. We expect there to be ways to
manage this complexity, for example, by providing
default bindings. The scalability of the synthesis
algorithm has already been evaluated on real-world
examples and a Rational Rose add-in has been
developed for creating and instantiating Pattern
Specifications.

8. References

[1] I. Alexander and N. Maiden (eds.) Scenarios, Stories,
Use Cases. John Wiley, 2004.

[2] S. Clarke and R. J. Walker, “Composition Patterns: An
Approach to Designing Reusable Aspects”, Proceedings of
International Conference on Software Engineering, 2001.

[3] A. Dardenne, A. Lamsweerde, and S. Fickas, "Goal-
directed Requirements Acquisition". Science of Computer
Programming, Vol. 20, No., pp. 3-50, 1993.

[4] T. Elrad, R. Filman, and A. Bader (eds.), "Theme Section
on Aspect-Oriented Programming", CACM, 44(10), 2001.

[5] A. Finkelstein and I. Sommerville, "The Viewpoints
FAQ" BCS/IEE Software Engineering Journal, Vol. 11(1),
1996.

[6] R. France, D. Kim, S. Ghosh and E. Song, “A UML-
Based Pattern Specification Technique”, IEEE Transactions
on Software Engineering, Vol. 30(3), 2004.

[7] G. Georg, I. Ray and R. France. “Using Aspects to
Design a Secure System”, Proceedings of the 8th IEEE

International Conference on Engineering of Complex
Computer Systems, Greenbelt, Maryland, 2002.

[8] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C.
Lopes, J. Loingtier, and J. Irwin. “Aspect-oriented
programming”, Proceedings of the European Conference
on Object-Oriented Programming, Vol. 1231, 1997.

 [9] D. Kim, R. France, S. Ghosh and E. Song, “A UML-
Based Metamodeling Language to Specify Design Patterns”,
Proceedings of Workshop on Software Model Engineering
(WiSME), at UML 2003, San Francisco, 2003.

[10] S. Konrad, B. Cheng. Requirements Patterns for
Embebed Systems. IEEE Joint International Conference on
Requirements Engineering, Essen, Germany, 2002.

[11] A. van Lamsweerde, "Goal-Oriented Requirements
Engineering: A Guided Tour". 5th International Symposium.
on Requirements Engineering, pp. 249-261, 2001.

[12] A. Rashid, A. Moreira and J. Araújo, “Modularisation
and Composition of Aspectual Requirements”, Proceedings
of the 2nd International Conference on Aspect-Oriented
Software Development, ACM Press, pp. 11-20, 2003.

[13] A. Rashid, P. Sawyer, A. Moreira and J. Araújo, “Early
Aspects: A Model for Aspect-Oriented Requirements
Engineering”, Proceedings of IEEE Joint International
Conference on Requirements Engineering, IEEE CS Press,
pp. 199-202, Essen, Germany, 2002.

[14] I. Sommerville and P. Sawyer, “Requirements
Engineering - A Good Practice Guide”. John Wiley and
Sons, 1997.

[15] Unified Modeling Language Specification, version 2.0,
January 2004, In OMG, http://www.omg.org

[16] J. Warmer and A. Kleppe, The Object Constraint
Language: Getting Your Models Ready for MDA, 2nd
Edition, Addison-Wesley, 2003.

[17] J. Whittle and J. Araújo, “Scenario Modeling with
Aspects”, IEE Proceedings Software, to appear.

[18] J. Whittle, J. Araújo and D. Kim, “Scenario Modeling
with Aspects”, Proceedings of Workshop on Aspect-Oriented
Modeling with UML at UML2003, San Francisco, 2003.

[19] J. Whittle and J. Schumann, “Generating Statechart
Designs from Scenarios”, Proceedings of the International
Conference on Software Engineering, pp. 314-323. Limerick,
Ireland, 2000.

[20] Workshop on Scenarios and State Machines: Models,
Algorithms and Tools, Proceedings of 25th International
Conference on Software Engineering, Portland, Oregon,
2003. http://www.doc.ic.ac.uk/~su2/SCESM

